高性能低功耗 ACDC 转换器

概述

AL610 是一款高性能低功耗的 ACDC 转换器,内置 1000V高压功率 MOS。85V~420V 的宽电压范围内提供 高达 10W 的输出功率。

AL610 采用高压启动设计,芯片直接连接到高压,以提供芯片启动所需电流,并在启动后关闭,以降低待机功耗;另外在轻载时进入 burst 模式,从而实现了系统空载时,待机功耗小于 30mW。

AL610 拥有完善的保护功能,包括过流保护
(OCP),过载保护(OLP),欠压锁定(UVLO),过压
保护(OVP),过温保护(OTP)等,以确保系统可靠的工作。

特点

- 内置1000V功率MOS
- 内置高压启动电路
- 软启动功能
- 轻载进入 burst 模式
- 抖频降低 EMI
- 前沿消隐
- 宽电压输入范围
- 输入电压 Brownout
- 完善的保护: OCP, OLP, UVLO, OVP, OTP

应用场合

- 智能电表
- 适配器
- 开放式电源

封装形式

DIP7

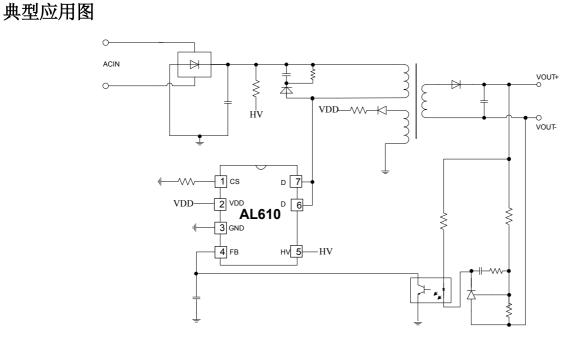
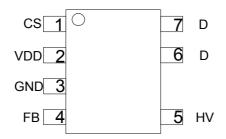
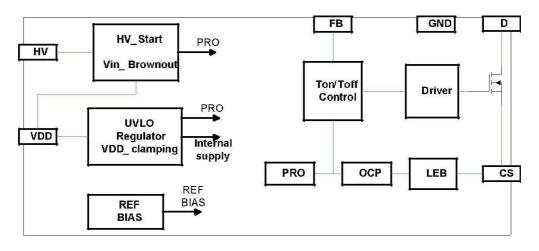



图 1. 典型应用电路

选型指南

产品型号	产品说明	
AL610	封装形式: DIP7	


产品脚位图

脚位功能说明

PIN 脚位	符号名	功能说明		
1	CS 主边电流检测,接限流电阻到地			
2	VDD 芯片电源,接辅助绕组供电			
3	GND	接地		
4	FB	光耦反馈		
5	HV	高压启动		
6, 7	D	高压 MOS 管的 Drain 端		

芯片功能示意图

极限参数

参数	极限值	单位
VDD 电压	-0.3~40	V
VDD 电流	0~10	mA
HV 电压	-0.3~700	V
FB、CS 电压	-0.3~7	V
工作环境温度范围	-40∼85	°C
储存温度范围	-55∼150	°C
结温范围	-40~150	°C
封装热阻 (结到环境)	40	°C/W
焊接温度和时间	+260(10 秒)	°C
ESD(HBM)	2500	V
ESD(MM)	300	V

注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

推荐工作条件

参数	范围	单位
VDD 电源电压	8~ 30	V
工作环境温度	-40 ~ 85	°C

电话: 13776267687 (微信同号) QQ:18582449 网址: www.along-china.com

电气参数 (除非特殊说明,测试条件为: TA = 25°C, VDD=16V)

符号	参数	条件	Min	Тур.	Max	Unit
高压启动 (HV	′)		•	•	•	
Start	高压启动电流	V _{HV} = 30 V	-	400	-	μΑ
lbo	Brown out current	可外接电阻调输入 Vac 电 压阈值	500	550	600	uA
lbi	Brown in current		600	650	700	uA
电源(VDD)						
Startup	启动电流	VDD= UVLO _{OFF} -0.1V,流 入VDD 的电流	-	2	20	μΑ
VDD_Operation	工作电流	V _{FB} =3V	-	0.8	-	mA
UVLOon	VDD 欠压锁定电压		6	7	8	V
UVLOoff	VDD 启动电压		13	14	15	V
VDD_Clamp	VDD 嵌位电压	I _{VDD} = 10 mA	-	35	-	V
OVPON	VDD 过压保护电压		-	30	-	V
OTP	过温保护		-	140	-	$^{\circ}\mathbb{C}$
反馈 (FB)						
V _{FB_Open}	FB 开路电压		-	5	-	V
FB_Short	FB 短路电流	Short FB pin to GND, measure current	-	0.33	-	mA
Vref_green	进入绿色模式时的 FB 电压		-	2.1	-	V
VREF_BURST_L	进入突发模式时的 FB 电压		-	1.2	-	V
V _{TH_PL}	过功率保护 FB 电压		-	3.4	-	V
T _{D_PL}	过载保护时间			60		mS
电流检测 (CS	8)					
T_blanking	前沿消隐时间		-	300	-	nS
T _{D_} oc	检测到控制的延迟时间		-	120	-	nS
Vтн_ос	最大电流限制比较电压	FB=3.3V	-	0.55		V
T _{on_max}	最大导通时间		-	10	-	uS
Toff_min	最小关断时间		-	5	-	uS
Tsoft_start	软启动时间			3		mS
频率						
F _{max}	最大开关频率	FB=3V	50	60	70	kHz
F_d	抖频范围			±5		%
内置 MOS						
VDS	MOS 漏源耐压		1000			V
RDS_ON	导通电阻	VDS=100V , VGS=10V , IDS=1A			7	Ω
IDS	标称电流			2		Α

电话: 13776267687 (微信同号) QQ:18582449 网址: www.along-china.com

功能描述

AL610 是一款高精度 ACDC 转换器,在大范围的负载和输入电压变化情况下确保高精度恒压输出。初级峰值电流 决定输出关闭时间,功率开关导通时间由芯片内部 FB 端电压检测电路触发。另外 AL610 还集成高压启动功能,有效 降低待机功耗。

启动过程

启动过程中,芯片内置高压 JFET 直接连到外部高压线上,JFET 恒流 0.4mA 左右给 VDD 端电容充电,当 VDD 升到启动电压时,芯片使能控制 JFET 关闭以及芯片内部模块开始工作,驱动高压 MOS 开关。自带软启动设计可以有效降低启动过程中 MOS 的开关应力。正常工作状态,辅助绕组上的电压会随着输出电压的升高而升高,到一定程度后开始给芯片供电。如果 VDD 电压低于 UVLO 电压,芯片将自动关闭,重新进入启动过程。

电流检测以及前沿消隐

AL610 进行逐周期电流检测,开关电流经过一个检测电阻被 CS 脚检测到,到达一定阈值时控制开关关闭。为避免功率管开启时产生的尖峰造成误触发,有必要做一个前沿消隐时间,这里是 300nS。在这个时间里,开关不能被关闭。

绿色模式和突发模式

在空载或者轻载时,大部分能量损耗在功率开关管,而这损耗是和开关频率成正比的,因此低的开关频率可以有效降低损耗。

AL610 设计开关频率在空载和轻载时调整,在空载和轻载时 FB 电压会降低,降到 2.1V 时进入绿色模式,芯片频率随着 FB 电压降低而降低,当 FB 电压进一步降低到 1.2V 时,芯片进入 burst 模式,有效降低系统待机功耗。

保护功能

AL610 拥有完善的保护功能,以确保系统可靠的工作。包括逐周期过流保护(OCP),过载保护(OLP),VDD 欠压锁定(UVLO),VDD 过压保护(OVP),过温保护(OTP)等。

当 AL610 工作在超负载状态时,输出电压无法到达额定电压,FB 电压超过内部设置的功率限制阈值电压达到 60mS 时控制电路关闭开关管,辅助绕组无法继续供电,VDD 开始下降,直到降低到 UVLO 电压,芯片重新启动。

电话: 13776267687 (微信同号) QQ:18582449 网址: www.along-china.com